DEFINITION C. 8 Let $f: \Re^{n} \rightarrow \Re$ be a convex function defined on \Re^{n}. A subgradient of fat point \mathbf{x} is a vector $\mathbf{d} \in \Re^{n}$ satisfying

$$
f(\mathbf{y}) \geq f(\mathbf{x})+\mathbf{d}^{\top}(\mathbf{y}-\mathbf{x}), \quad \forall \mathbf{y} \in \Re^{n} .
$$

The subdifferential of a f at \mathbf{x}, denoted $\partial f(\mathbf{x})$, is defined as the set of all subgradients of f at \mathbf{x}. The definition for concave functions simply has the above inequality reversed.

Optimization Problems

Let $\mathbf{x} \in \Re^{n}$ denote a vector of decision variables, $f: \Re^{n} \rightarrow R$ be a given objective function and $X \subseteq \Re^{n}$ be a constraint set. A point \mathbf{x} in the set X is called feasible, and points not in X are called infeasible. In a maximization problem, we seek a feasible solution \mathbf{x}^{*}-called a global maximum (or global optimum)—such that

$$
\begin{equation*}
f\left(\mathbf{x}^{*}\right) \geq f(\mathbf{x}), \forall \mathbf{x} \in X \tag{C.2}
\end{equation*}
$$

Equivalently, \mathbf{x}^{*} solves

$$
\begin{equation*}
\max _{\mathbf{x} \in X} f(\mathbf{x}) \tag{C.3}
\end{equation*}
$$

We say such an \mathbf{x}^{*} is globally optimal. If X is the empty set, then the above optimization problem is said to be infeasible; otherwise, the problem is feasible. If $X=\Re^{n}$, the problem is said to be unconstrained. The problem is called unbounded if there exists a sequence of feasible points $\left\{\mathbf{x}^{(k)} ; k=1,2, \ldots\right\}$ with $\mathbf{x}^{(k)} \in X$ for all k and $\lim _{k \rightarrow \infty} f\left(\mathbf{x}^{(k)}\right)=+\infty$.

A minimization problem reverses the inequality above and is equivalent to maximizin $-f(\mathbf{x})$. We focus here on only the maximization version. If f is concave and X is convex, then the problem (C.3) is called a convex optimization problem.

Let $N(\mathbf{x}, \boldsymbol{\epsilon})=\{\mathbf{y}:\|\mathbf{y}-\mathbf{x}\| \leq \boldsymbol{\epsilon}\}$ denote the ball of radius $\boldsymbol{\epsilon}$ about the point \mathbf{x}. A solution \mathbf{x}^{*} is called a local maximum (or local optimum) if there exists an $\epsilon>0$ such that

$$
f\left(\mathbf{x}^{*}\right) \geq f(\mathbf{x}), \forall \mathbf{x} \in X \cap N\left(\mathbf{x}^{*}, \epsilon\right)
$$

We say such an \mathbf{x}^{*} is locally optimal. Note all global optima are also locally optimal.
In the convex case, local and global optima coincide:
Proposition C. 5 If fis a concave function defined on a convex set X, then any local maximum is a global maximum. If f is strictly concave, then if a global maximum exists, it is unique.

Optimality Conditions

Optimality conditions help identify and characterize optimal solutions. They are useful both theoretically and computationally.

Suppose $f \in C^{1}$. Then we have the following first-order necessary conditions for \mathbf{x}^{*} to be an optimal solution:
Proposition C. 6 If $f \in C^{1}$ and \mathbf{x}^{*} is a local maximum, then there exists an $\epsilon>0$ such that

$$
\nabla f\left(\mathbf{x}^{*}\right)^{\top}\left(\mathbf{x}-\mathbf{x}^{*}\right) \leq 0, \quad \forall \mathbf{x} \in X \cap N\left(\mathbf{x}^{*}, \epsilon\right)
$$

In particular, if $X=\Re^{n}$ (the unconstrained case), then this condition reduces to

$$
\begin{equation*}
\nabla \mathbf{f}\left(\mathbf{x}^{*}\right)=0 \tag{C.4}
\end{equation*}
$$

