DEFINITION C.8 Let $f: \mathbb{R}^n \to \mathbb{R}$ be a convex function defined on \mathbb{R}^n . A subgradient of f at point x is a vector $\mathbf{d} \in \mathbb{R}^n$ satisfying

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \mathbf{d}^{\top}(\mathbf{y} - \mathbf{x}), \quad \forall \mathbf{y} \in \mathbb{R}^n.$$

The subdifferential of a f at x, denoted $\partial f(x)$, is defined as the set of all subgradients of f at x. The definition for concave functions simply has the above inequality reversed.

Optimization Problems

Let $\mathbf{x} \in \Re^n$ denote a vector of decision variables, $f: \Re^n \to R$ be a given objective function and $X \subseteq \Re^n$ be a constraint set. A point \mathbf{x} in the set X is called feasible, and points not in X are called infeasible. In a maximization problem, we seek a feasible solution \mathbf{x}^* —called a global maximum (or global optimum)—such that

$$f(\mathbf{x}^*) \ge f(\mathbf{x}), \ \forall \mathbf{x} \in X.$$
 (C.2)

Equivalently, x* solves

$$\max_{\mathbf{x} \in X} f(\mathbf{x}). \tag{C.3}$$

We say such an \mathbf{x}^{\bullet} is *globally optimal*. If X is the empty set, then the above optimization problem is said to be *infeasible*; otherwise, the problem is *feasible*. If $X = \Re^n$, the problem is said to be *unconstrained*. The problem is called *unbounded* if there exists a sequence of feasible points $\{\mathbf{x}^{(k)}; k=1,2,\ldots\}$ with $\mathbf{x}^{(k)} \in X$ for all k and $\lim_{k\to\infty} f(\mathbf{x}^{(k)}) = +\infty$.

A minimization problem reverses the inequality above and is equivalent to maximizin $-f(\mathbf{x})$. We focus here on only the maximization version. If f is concave and X is convex, then the problem (C.3) is called a *convex optimization problem*.

Let $N(\mathbf{x}, \epsilon) = \{\mathbf{y} : \|\mathbf{y} - \mathbf{x}\| \le \epsilon\}$ denote the ball of radius ϵ about the point \mathbf{x} . A solution \mathbf{x}^* is called a *local maximum* (or *local optimum*) if there exists an $\epsilon > 0$ such that

$$f(\mathbf{x}^*) \ge f(\mathbf{x}), \ \forall \mathbf{x} \in X \cap N(\mathbf{x}^*, \epsilon).$$

We say such an \mathbf{x}^{\bullet} is *locally optimal*. Note all global optima are also locally optimal. In the convex case, local and global optima coincide:

PROPOSITION C.5 If f is a concave function defined on a convex set X, then any local maximum is a global maximum. If f is strictly concave, then if a global maximum exists, it is unique.

Optimality Conditions

Optimality conditions help identify and characterize optimal solutions. They are useful both theoretically and computationally.

Suppose $f \in C^1$. Then we have the following *first-order necessary conditions* for \mathbf{x}^* to be an optimal solution:

PROPOSITION C.6 If $f \in C^1$ and \mathbf{x}^* is a local maximum, then there exists an $\epsilon > 0$ such that

$$\nabla f(\mathbf{x}^*)^{\top}(\mathbf{x} - \mathbf{x}^*) \leq 0, \ \forall \mathbf{x} \in X \cap N(\mathbf{x}^*, \epsilon).$$

In particular, if $X = \Re^n$ (the unconstrained case), then this condition reduces to

$$\nabla \mathbf{f}(\mathbf{x}^*) = 0. \tag{C.4}$$